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Introduction

Development of large models:
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Figure: Large models are popular now

® |arge models in various fields start to to evolve into giant ones to pursuit emergent abilities.
® Fine-tuning the pre-trained models using data of specific tasks is a typical usage pattern now.

® Due to the privacy security, fine-tuning for specific tasks is usually short of data.

i
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FL disadvantages: HFL advantages:

i )
Cloud Server ® Train Local Model with B for £ ! Cloud !
I i
Local Model ! Server !
@ Select K _i = .@ ! i
Participants _II._OC.a[ e
among . raining admd SN deed A
N devices Samples = R
r | & _frequency
[ Local Model ] | i
—] I
@ Broadcast 4@‘ %
Global Modelj - Selected K Participants i i H
\/\ | [
i = L
—] Il ! [
= [ i 0 §
® Aggregate . @ Upload | - ! : L
Local Gradients N Devices Local Gradients i :E“gzzgﬂgﬁ;“"”‘ Clusters Edgz:ﬁg;ﬁi;““" il

Figure: Overview of FL Figure: Overview of HFL

® Communication difficulty e Optimized communication

® Not conducive to large-scale deployment * Improve scalability
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Hierarchical federated learning (HFL):
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2. Background and Motivation
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Hierarchical federated learning:
® Local SGD(Device j):

Fi(wy) = —

= @ Z fi(wj,z,y)

(z,y)€D;
® Edge aggregation(Edge 7):
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Hierarchical federated fine-tuning:

® Freeze backbone network parameters, fine-tune the

adapter locally.

® During aggregation, only adapter parameters are
uploaded for aggregation.
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Figure: Framework of hierarchical federated fine-tuning

TY.Qi (Beijing Institute of Technology) Tomtit: Hierarchical Federated Fine-Tuning of Giant Models based on Autonomous Synchronization

7126



Background and Motivation

tFexxY¥

BEWING INSTITUTE OF TECHNOLOGY

Influence of adapters:
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Influence of device heterogeneity:
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Figure: Overhead of adapter-based fine-tuning

® Adapters can be customized by adjusting depth and

width.

® Different adapter configurations, leading to varying

local training time, communication time.

® Test on a transformer-based Bert model trained

with the T-Rex dataset.

Observation 1

Figure: Computing capability statistics under different edges

® Measure the computing capability by Measuring
Broadband America (MBA) and AlBenchmark.

® The distribution indicate heterogeneity among
devices at network and computation capability.

® The distribution between areas suggests
heterogeneity between edges.

Hierarchical federated fine-tuning systems have strong heterogeneity.
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Background and Motivation

Influence of model synchronization frequency:
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Figure: Accuracy and efficiency of different schemes

® System setting: A testbed consisting of 50 Raspberry Pis as devices and 5 laptops as edges.
® Aggre-A: Synchronization frequencies of devices whose CPU utilization is less than 30% are set to 5, and

others are 1.
® Aggre-B: Conduct a fine-grained control by setting synchronization frequencies proportional to device CPU

utilization.

Observation 2
Applying HFL federated fine-tuning by a sophisticated synchronization scheme exists a large optimization space. J

.
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Background and Motivation

Centralized control challenges:
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Figure: Overhead of centralized control in large-scale systems

® Almost all works are based on centralized control, which needs to collect global system states and run
complex algorithms.

® The number of system parameters collected for centralized control linearly increases as the growth of devices.

® The time needed for decision making also increases to an unaffordable level.

Observation 3
We need to design a distributed solution to address the bottleneck incurred by centralized control. J
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3. Design of Tomtit
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Overview of Tomtit:

Framework:

Multi-Agent System
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Figure: Tomtit design

® Tomtit use a distributed synchronization control based on Multi-Agent Reinforcement Learning.

® Deploy a control module called an agent in each edge server, collecting information from server and devices.

® Each agent determines a synchronization frequency as the action for each associated device.
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Overview of Tomtit:

Multi-Agent System
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Advantages:

Figure: Tomtit design

® High accuracy: Aim to train adapters within a limited time to enhance model accuracy.

® |ow energy consumption: Minimize the average energy consumption of devices as much as possible.

® Autonomy: Enable each agent to make independent and efficient decisions.
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Figure: Composition of the observation and global state

The observation:

® Collect the observation for actor networks in the edges.

® Model parameters:

ol (k) =

PCA{[g(w(k)”

® Time and energy consumption:
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The global state:

Enhancement

® Separate the actor and cirtic network of the agent
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Figure: Composition of the observation and global state .

Splice:

s(k) = cat{(s'(k), cat{(s®(k), s2(k)), dim = 0}),dim = 1}
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Action:
® |n each round of cloud communication, agent i determines
its action a;(k) = {i k, fyilﬁk,'yiz,k, .. ,'yZNé}
Reward:

® Denote the reward given to agent i, where Q(u) = T:

ri(k) = Q(A™! (k) — QA" (k — 1)) — eE;(k)

Workflows:
1. Initialize the parameters;
2. Train HFL for several rounds and train PCA modules;
3. Agents make decision and choose action, push (s(k),
oi(k),ai(k),ri(k),s(k+1),0;(k 4+ 1)) to the memory;
4. Repeat step 3 until T7¢(k) < 0;

TY.Qi (Beijing Institute of Technology)

Update each Agent; by state-action-reward in the agent’s
memory pool.

Algorithm 1 Tomtit’s Training Process

18:
19:

: Initialize round of cloud aggregations k = 0, threshold

time 7', remaining time 7"¢(0) = T', global model w(0),
Agent; for edge i, i € M;

Train several cloud aggregation by given aggregation
frequencies, get w(1), w§(1), w;(1), and record T"%¢(1);

Train PCA module by w(1) ,w§(1), and w;(1);
Update TS, = T7(1) — T#*(1); k++;
for 1to Q do

Get s(k) and o;(k) for Agent;, i € Mj;
while true do
a;(k) = Agent;.choose_action(o;(k)),i € M;
Train HFL by {a;(k)}iem, record T%*¢(k) and up-
date T (k) = T7(k — 1) — T"*(k);
s(k+1),0:(k +1),r:(k) = Agent;.step(),i € Mj;
7F = (s(k), 0;(k), as(k), i(k), s(k + 1), 05(k + 1));
Agent;.push(tF),i € M; k++;
if T7(k) < 0 then
Set k =1, T"(k) = T0%;
break
end if
end while
Agent;.PPO_update_&_clear(),i € Mj;
end for

Tomtit: Hierarchical Federated Fine-Tuning of Giant Models based on Autonomous Synchronization
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Convergence:
Assumption
® The loss function is L-smooth and the Lipschitz constant L > 0, i.e., [|[Vf(z) — Vf(y)|| < L|jz — y||.

- 2
® The estimated stochastic gradient is unbiased for devices, i.e., E {Hij (wy) — Vf(w)” | w} < o2

Convergence

® We can get the model updates formula as

N Yi,k—
w(k + 1) = w(k) 4;2— - Z
eM N €eN;

a=0

Vi (wj; (k,a,B))

2

HMM

® The relationship between the models w(k) and w(k + 1) is

E[f (w(k +1))] - E[f (w(k))] < gE l[w(k +1) —w(k)

2 +E(Vf (w(k)), w(k + 1) — w(k))
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Theorem

® After subjecting our refined frequency variation method to a round of cloud communication, the convergence

bound is 12,8 v
BLF (w(h+ 1)) - B (w()] <5075 (G - 1)+ 375 (55 - 1)) o
2
+ 2L~ Fi750% — IFTEIVS (W),
® where

L2l (] =1 P32 (ik — 1)
2 2

P=1

= Ly ki -

i
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Settings:

® Testbed: Edges are 5 (default) or 10, and devices are 20, 50 (default) and 100.

® Datasets: MNIST, Cifar-10, and Cifar-100.

® Baselines: Vanilla-FL, Vanilla-HFL, FedProx, FedNova, Share, Moon

® Heterogeneity:

1. Different adapter settings for each device.

2. Sample bandwidth from MobiPerf and apply to the edge.
3. The data set is segmented in label non-1ID and Dirichlet non-1ID.

The performance of DRL training:
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Figure: The reward of training the MARL agent
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Figure: Accuracy v.s. time of different FL methods
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The performance with different threshold time:
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Figure: Performance under different training time
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The performance with different non-11D levels:
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Figure: Performancesumption under different non-11D levels
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TY.Qi (Be

Scalability:

® Change various scale configurations about the number of edges and devices.

PERFORMANCE AT DIFFERENT SCALES

Scale Vanilla-FL Vanilla-HFL FedNova Favor Share Moon Tomtit
(Bdgos, Devices) Data Acc  Energy | Acc Energy | Acc Acc  Energy | Acc Energy | Acc Energy | Acc Energy | Acc Energy
.. (%)  (mAh) | (%) (mAh) (%) (mAh) | (%) (mAh) | (%) (mAh) | (%) (mAh) | (%) (mAh)
518 2183 589 268.7 574 2268 53.1 209.5 622 268.7 60.9 228.1 645 1483
(5, 20 433 12588 | 460 14532 458 12516 | 449 12892 | 478 14532 | 46.1 12474 | 484 7815
245 50083 | 284  6093.6 279 51536 | 251 52207 | 292 60936 | 290 51116 | 315
0] 55.7 2203 638 2710 62.1 232.1 576 2447 702 2710 66.7 2296 738
QEARI0 | des 704 | GRS 1iois W1 ios |74 1068 | 00 1as | 404 1ashs | 52
Grariioo | 363 51126 | 303 6ores 35 sowa | 268 s | 20 conas | 3 Si76s | w2
5. 100] MNIST 48.1 2318 542 2708 529 2069 50.8 228.7 56.3 2708 55.7 225 563
5. rarto |2 Dia | 341w Ga imer |ia isia | s ue | s ik | a2
CIF 00 | 221  5023.1 270 59837 261 51693 | 229 52015 | 28.1 59837 | 278 52814 | 30.2
110, 100} MNIST 48.1 2318 549 2708 52.1 2189 529 206.9 508 228.7 570 2708 55.7 225 58.6
: iAo | 402 Do | 33 iase |25 imes | 4 167 | 24 1sio | dne iwre | 453 iaias | d6
CIFAR-100 | 22.1  5023.1 276 59837 | 252 51542 | 261 51693 | 229 52015 | 28.5 59837 | 278 52814 | 30.6
Dynamic system environment:
® change data distribution and CPU utilization of devices.
TABLE II
ROBUSTNESS IN DYNAMIC ENVIRONMENTS
| | 10% | 30% | 50%
MNIST 73.71%(-0.21%) | 73.45%(-0.37%) | 73.12%(-0.60%)
CPU CIFAR-10 | 52.64%(-0.29%) | 52.35%(-0.58%) | 52.11%(-0.82%)
CIFAR-100 | 32.92%(-0.31%) | 32.76%(-0.47%) | 32.44%(-0.79%)
MNIST 73.15%(-0.67%) | 72.91%(-0.91%) | 72.50%(-1.21%)
Data CIFAR-10 52.27%(-0.66%) | 51.68%(-1.25%) | 51.49%(-1.44%)
CIFAR-100 | 32.85%(-0.38%) | 32.11%(-1.12%) | 31.70%(-1.53%)
MNIST 72.54%(-1.28%) | 72.05%(-1.77%) | 71.86%(-1.94%)
CPU+Data CIFAR-10 52.03%(-0.90%) | 51.30%(-1.63%) | 50.96%(-1.97%)
CIFAR-100 | 32.49%(-0.74%) | 31.88%(-1.35%) | 31.24%(-1.99%)
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The impact of agent design:
® 1.Tomtit-G: Concatenating observations as the global state;

® 2.Tomtit-R: replace Q(u) = T* with Q(u) = w in the reward.
State dimension:

® Change the dimensionality of PCA of the state.
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(a) Accuracy of training MNIST  (b) Accuracy of training CIFAR-10
Figure: Training the DRL agent Figure: Impact of different principal component
i
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5. Conclusion
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Conclusion

® We propose a hierarchical federated fine-tuning system, which can achieve higher model accuracy and lower
energy consumption when fine-tuning models.

® We design a distributed algorithm based on MARL to determine the aggregation frequency of edges and
devices, and prove convergence.

® We conduct extensive experiments comparing with the state-of-the-arts in a real system.
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Thank you for your attention!
Questions?
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