Sylva: Tailoring Personalized Adversarial Defense in Pre-trained Models via Collaborative Fine-tuning

ACM Conference on Computer and Communications Security (CCS) 2025

Tianyu Qi, Lei Xue, Yufeng Zhan, Xiaobo Ma qity9@mail2.sysu.edu.cn

School of Cyber Science and Technology Sun Yat-sen University

October 14, 2025

Outline

- 1. Introduction
- 2. Preliminaries
- 3. Methodology
- 4. Experiments
- 5. Discussion and Conclusion

Introduction

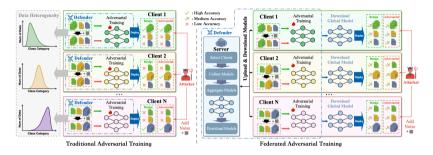


Figure: Challenges of adversarial training in multi-client scenario.

Backgrounds:

- Edge advances enable on-device deployment of large pre-trained models (latency, privacy).
- Local models face intensified probing and adaptive adversarial attacks, elevating reliability/security risk.

Recent challenges:

- Adversarial training: Non-IID client data hinders adversarial training, leading to degraded performance.
- Federated adversarial training: Large model size results in low training efficiency.

Introduction

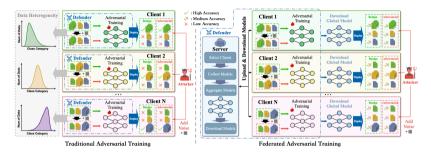


Figure: Challenges of adversarial training in multi-client scenario.

Our Contributions

- How to design a personalized defense framework? (Heterogeneous data distributions)
- How to enhance both adversarial robustness and benign accuracy? (Trade-off model performance)
- How to balance efficiency for clients? (Deployment on edge devices)

Outline

- 1. Introduction
- 2. Preliminaries
- 3. Methodology
- 4. Experiments
- 5. Discussion and Conclusion

Federated adversarial training (FAT):

• Federated learning on local device:

$$f_i(w_i) = \frac{1}{|\mathcal{D}_i|} \sum_{(x,y) \in \mathcal{D}_i} f_i(w_i, x, y)$$

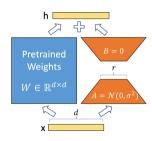
• Federated adversarial training on local device:

$$f_i(w_i, x, x^{adv}, y) = \min \mathbb{E}_{x \sim \mathcal{D}_i} \left[\max_{\left\| x^{adv} - x \right\|_{\infty} \le \delta} \mathcal{L}(w_i, x, x^{adv}, y) \right]$$

Aggregation on server:

$$w_g = \sum_{i=1}^{N} \frac{|\mathcal{D}_i| w_i}{\sum_{i=1}^{N} |\mathcal{D}_i|}$$

Low-rank adaption (LoRA):



• Prediction based on pretrained backbone w^P , LoRA w^L , and clasffier w^C :

$$\hat{y} = \mathcal{F}(x) = \mathcal{F}^C(\mathcal{F}^P(x) + \mathcal{F}^L(x))$$

Threat model:

Attacker categories

- White-box attacks: Access to all parameters.
- Grey-box attacks: Access to pre-trained parameters.

Attacker criteria

- Inconspicuousness: Perturbations go unnoticed by humans.
- Impactfulness: Compromise downstream tasks

Defender characteristics

- Data Privacy: Safeguard each client's privacy and security.
- Heterogeneity: Support personalized models in diverse scenarios.
- Efficiency: Accommodate the limited computational resources of clients.

Impact of adversarial training with LoRA:

- We use ResNet-18 and ViT(ViT-T/16, ViT-B/16, ViT-L/16), applying the TRADES for adversarial fine-tuning via LoRA on CIFAR-10.
- Metrics: Adversarial Robustness, Benign Accuracy, Time, Parameter Size, GPU Memory.

Table 1: Adversarial training with/without LoRA

Metrics	Methods	ResNet18	ViT-T	ViT-B	ViT-L
ADA (m)	w-LoRA	48.22	58.72	61.14	64.69
AR↑ (%)	w/o-LoRA	54.36	53.28	59.02	62.18
DAA (m)	w-LoRA	59.35	63.27	69.73	75.91
BA↑ (%)	w/o-LoRA	62.05	60.14	64.37	70.66
Time↓	w-LoRA	0.31	0.84	1.60	4.90
103s/epoch)	w/o-LoRA	0.38	1.13	1.90	6.38
D L (A ()	w-LoRA	0.51	1.95	2.06	2.29
Paras↓ (M)	w/o-LoRA	11.16	7.37	84.84	292.14
M L (C)	w-LoRA	0.98	0.89	3.14	6.63
Mem↓ (G)	w/o-LoRA	1.25	1.04	4.86	11.43

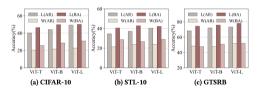
Discovery 1

 LoRA-based adversarial fine-tuning preserves or even improves defense effectiveness while drastically reducing computational overhead, making it ideal for edge devices.

Impact of the personalized framework:

RQ

- Can we split each client model into adversarial and personalized components?
- We simulate a non-IID environment on CIFAR-10, STL-10, and GTSRB using Dirichlet distribution.
- We use TRADES for federated adversarial fine-tuning via LoRA.
- Two strategies: uploading whole parameters (W) and uploading only LoRA (L).

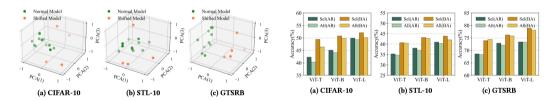


Discovery 2

Aggregating only the backbone (LoRA) and personalizing the classifier preserves generalized feature
extraction while enhancing the classifier's sensitivity to heterogeneity.

Impact of the aggregation method:

- LoRA parameters may be impacted by non-IID data.
- We apply PCA to the LoRA parameters, reducing them to 3 dimensions.
- Two aggregation strategies: aggregate all models (All) and aggregate only closed models (Sel).

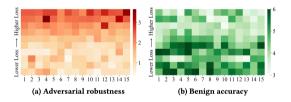


Discovery 3

• Data heterogeneity can cause LoRA model drift, and models with excessive drift, when aggregated, can enhance convergence speed and reduce adversarial training performance.

Limitations of the robustness-accuracy trade-off:

- Freezing low-robustness layers and retraining improves accuracy.
- Inter-layer interactions must be considered.
- Evaluate multiple layer combinations by summing and ranking losses.



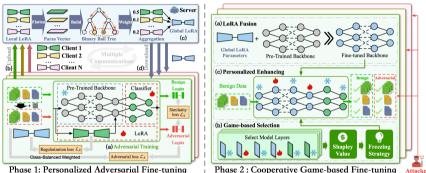
Discovery 4

• Jointly selecting robustness-insensitive layers for fine-tuning effectively enhances benign accuracy, but the interactions among layers prevent achieving the optimal outcome.

Outline

- 1. Introduction
- 2. Preliminaries
- 3. Methodology
- 4. Experiments
- 5. Discussion and Conclusion

Methodology



Phase 1: Personalized Adversarial Fine-tuning

Overview:

- Phase 1: Federated LoRA fine-tuning yields a robust shared backbone and personalized classifiers.
- Phase 2: Shapley-guided layer freezing boosts accuracy with robustness preserved.

Adaptive Class-balanced Dynamic Weighted Loss:

• The class imbalance weight:

$$h_{i_c}^{Base} = \frac{1 - \gamma}{1 - \gamma^{n_{i_c}}}$$

• The dynamic smoothing weight:

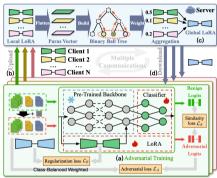
$$h_{i_c}^{Ada}(t) = \epsilon \cdot h_{i_c}^{Ada}(t-1) + (1-\epsilon) \cdot h_{i_c}^{Base}(t)$$

• The smoothed class weights are normalized:

$$h_{i_c}(t) = \frac{h_{i_c}^{Ada}(t)}{\sum_{c=1}^{C} h_{i_c}^{Ada}(t)}$$

The adversarial training loss:

$$\mathcal{L}_{A}(w_{i}, x^{adv}, y) = \min \sum_{(x, y) \in \mathcal{D}_{i}} h_{iy} \cdot \mathcal{L}_{CE}(\mathcal{F}(w_{i}, x^{adv}), y)$$



Phase 1: Personalized Adversarial Fine-tuning

Figure: Overview of Phase 1.

 A KL-divergence loss to align benign and adversarial samples:

$$\mathcal{L}_{S}(w_{i}, x, x^{adv}) = \mathcal{L}_{KL}(\mathcal{F}(w_{i}, x), \mathcal{F}(w_{i}, x^{adv}))$$

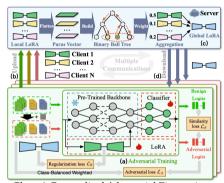
$$= \sum \operatorname{softmax}(\mathcal{F}(w_{i}, x)) \cdot \log \left(\frac{\operatorname{softmax}(\mathcal{F}(w_{i}, x))}{\operatorname{softmax}(\mathcal{F}(w_{i}, x^{adv}))} \right)$$

• A regularization loss to preserve generalization:

$$\mathcal{L}_R(w_i^L, w_g^L) = \left\| w_i^L - w_g^L \right\|_2^2$$

• Weight the above loss as:

$$\mathcal{L} = \mathcal{L}_A + \lambda_1 \mathcal{L}_S + \lambda_2 \mathcal{L}_R$$



Phase 1: Personalized Adversarial Fine-tuning

Figure: Overview of Phase 1.

Ball-tree-based Aggregation:

• Flatten LoRA parameters to vectors:

$$\mathbf{G} = \{\mathcal{G}(w_1^L), \mathcal{G}(w_2^L), \dots, \mathcal{G}(w_N^L)\}$$

 Identify the k vectors closest to i and compute the distance:

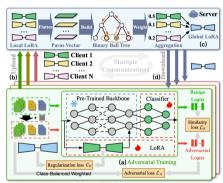
$$d_{ij_m} = \|\mathcal{G}(w_i^L) - \mathcal{G}(w_{j_m}^L)\|_2, \quad m = 1, 2, \dots, k$$

Obtain the aggregation weights:

$$q_{i} = \frac{\sum_{m=1}^{k} \exp\left(-\frac{d_{ij_{m}}}{\sigma^{2}}\right)}{\sum_{i=1}^{N} \sum_{m=1}^{k} \exp\left(-\frac{d_{ij_{m}}}{\sigma^{2}}\right)}$$

• The server weights the LoRA parameters:

$$w_g^L = \sum_{i=1}^{N} \frac{q_i |D_i| w_i}{\sum_{i=1}^{N} q_i |D_i|}$$



Phase 1: Personalized Adversarial Fine-tuning

Figure: Overview of Phase 1.

Shapley Game for Layers:

• Define two sensitivity losses as:

$$\begin{split} \mathcal{L}_{rob}(\mathbf{S}) &= \mathcal{L}_{CE}(\mathcal{F}(w_i^{\{\mathbf{S}\}}, x^{adv}), y) - \mathcal{L}_{CE}(\mathcal{F}(w_i, x^{adv}), y) \\ \mathcal{L}_{acc}(\mathbf{S}) &= \mathcal{L}_{CE}(\mathcal{F}(w_i^{\{\mathbf{S}\}}, x), y) - \mathcal{L}_{CE}(\mathcal{F}(w_i, x), y) \end{split}$$

• The value function in the cooperative game:

$$v(\mathbf{S}) = \mathcal{L}_{acc}(\mathbf{S}) - \beta \cdot \mathcal{L}_{rob}(\mathbf{S})$$

• The Shapley value for each layer l:

$$\phi_l = \sum_{\mathbf{S} \subseteq \mathbf{L} \setminus \{l\}} \frac{|\mathbf{S}|!(L - |\mathbf{S}| - 1)!}{L!} \left[v(\mathbf{S} \cup \{l\}) - v(\mathbf{S}) \right]$$

• Select p layers $\mathbf{P} = \{l_1, l_2, \dots, l_p\}$, where $\phi_{l_1} \geq \phi_{l_2} \geq \cdots \geq \phi_{l_n}$

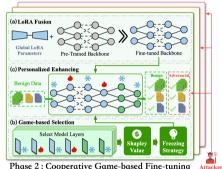


Figure: Overview of Phase 2.

Monte Carlo Sampling Optimization:

- Randomly generate B permutations of the model layers, as $\pi^{(1)}, \pi^{(2)}, \dots, \pi^{(B)}$
- The marginal contribution is:

$$\phi_l \approx \frac{1}{B} \sum_{b=1}^{B} \left[v(\mathbf{S}_l^{(b)} \cup \{l\}) - v(\mathbf{S}_l^{(b)}) \right]$$

Original complexity is $O(2^L \times L)$, reduced to $O(B \times L)$ using Monte Carlo Sampling, with the error decreasing at a rate of $O(1/\sqrt{B})$.

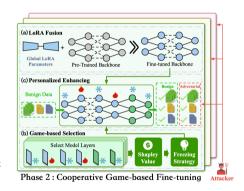


Figure: Overview of Phase 2.

Outline

- 1. Introduction
- 2. Preliminaries
- 3. Methodology
- 4. Experiments
- 5. Discussion and Conclusion

Experimental Setup:

- Datasets and models. CIFAR-10, STL-10, GTSRB, CIFAR-100; ViT-T/16, ViT-B/16, ViT-L/16.
- Attacks. FGSM, PGD, SparseFool, PAP.
- Baselines. Standard defense: PGD-AT, TRADES, Gen-AF; Distributed scenario: FedAvg, FedProx, DBFAT, Per-Adv, Per-LoRA.
- Implementation. Simulation: 4 NVIDIA A100 GPUs using Ray; Real world: GeForce RTX 4090, 3090, and 2080Ti, Apollo D-KIT, Jetson AGX Orin.

4 key research questions

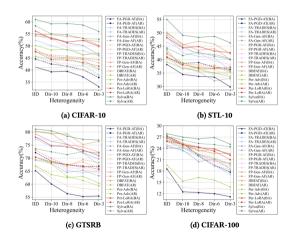
- RQ1: How does Sylva perform against different attack algorithms in terms of robustness and accuracy?
- RQ2: How does Sylva handle varying heterogeneous data distributions across diverse clients?
- RQ3: How does Sylva achieve efficiency in communication and computation in distributed environments?
- RQ4: How do Sylva's hyperparameters influence its overall robustness and accuracy performance?

Performance of adversarial training:

Table 2: Performance comparison of Sylva and baseline under different datasets and attack algorithms (ViT-B/16)

Datasets	Baselines	Benign(BA)	FGSM	PGD	SparseFool	PAP
	FA-PGD-AT	39.25	45.89	42.50	48.02	44.12
	FA-TRADES	50.12	45.04	43.39	45.71	43.56
	FA-Gen-AF	53.42	46.95	45.73	45.53	45.39
CIFAR-10	FP-PGD-AT	41.04	45.28	43.63	48.51	45.43
CHAR-10	FP-TRADES	52.85	47.45	45.42	46.02	44.46
	FP-Gen-AF	54.70	48.52	46.21	49.88	47.12
	DBFAT	53.56	45.63	44.94	48.93	48.41
	Per-Adv	48.28	44.52	42.61	44.31	44.40
	Per-LoRA	53.02	47.21	44.32	46.71	44.35
	Sylva(Ours)	59.03	52.88	55.03	52.68	51.89
	FA-PGD-AT	34.53	39.85	38.61	40.26	39.88
	FA-TRADES	42.65	37.65	36.50	39.80	39.20
	FA-Gen-AF	44.72	38.57	37.18	39.65	40.15
STL-10	FP-PGD-AT	36.48	38.58	37.21	41.32	39.74
31L-10	FP-TRADES	43.68	39.10	37.21	38.92	38.85
	FP-Gen-AF	45.83	41.01	38.53	41.83	41.23
	DBFAT	45.55	41.05	38.01	41.60	40.75
	Per-Adv	36.71	40.20	38.87	39.93	39.67
	Per-LoRA	44.37	40.84	38.11	41.09	40.66
	Sylva(Ours)	49.11	43.78	41.48	44.05	44.20
	FA-PGD-AT	60.17	68.34	68.98	71.67	71.52
	FA-TRADES	74.38	67.88	68.68	70.65	72.33
	FA-Gen-AF	76.45	68.91	67.89	71.72	71.48
GTSRB	FP-PGD-AT	62.53	68.85	68.92	71.93	71.83
	FP-TRADES	76.43	69.37	69.85	70.88	71.49
	FP-Gen-AF	79.55	69.51	69.90	71.56	73.15
	DBFAT	79.40	68.58	68.72	70.70	73.45
	Per-Adv	63.70	68.03	67.83	69.68	70.09
	Per-LoRA	74.84	68.70	68.34	71.01	70.78
	Sylva(Ours)	80.49	72.63	72.40	73.78	74.30
	FA-PGD-AT	12.45	25.82	25.27	27.36	26.59
	FA-TRADES	24.08	24.88	23.35	25.20	25.44
	FA-Gen-AF	23.65	25.33	24.20	26.16	25.47
CIFAR-100	FP-PGD-AT	13.71	25.70	25.25	28.00	26.79
CH1M-100	FP-TRADES	24.61	23.83	25.32	26.67	25.69
	FP-Gen-AF	25.07	25.45	25.34	27.46	26.63
	DBFAT	25.02	25.11	25.29	27.11	28.33
	Per-Adv	15.31	24.37	24.47	25.02	26.80
	Per-LoRA	24.85	25.38	24.92	27.13	27.06
	Sylva(Ours)	26.95	27.63	26.23	28.95	28.70

Performance of different heterogeneous distributions:



Comparison of adversarial training efficiency:

• Real-world GPU devices.

Table 3: Detailed specifications of GPUs in real edge devices

	Type	Memory (GB)	Clock (MHz)	Bandwidth (GB/s)	FP16 (TFLOPS)
RTX 4090	GDDR6X	24	2235	1010	82.58
RTX 3090	GDDR6X	24	1395	936	35.58
RTX 2080-Ti	GDDR6	12	1350	768	30.14
RTX 3060	GDDR6	12	1320	360	12.74
AGX Orin	LPDDR5	32	930	204	10.65

(a) GeForce RTX 3060

(b) Jetson AGX Orin

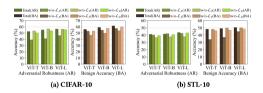
• Efficiency in real-world scenarios.

Table 4: Efficiency comparison of Sylva on different edge devices

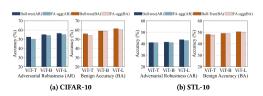
		Mem↓			Time↓ (×10 ³ s)				Com↓ (s)			
		(G)	RTX 4090	RTX 3090	RTX 2080-Ti	RTX 3060	AGX Orin	RTX 4090	RTX 3090	RTX 2080-Ti	RTX 3060	AGX Orin
	FAT	1.04	0.35	0.45	0.47	0.49	0.99	0.7	1.3	1.5	1.0	1.2
ViT-T	Per-LoRA	0.89	0.31	0.32	0.33	0.32	0.82	0.9	0.7	1.1	1.1	1.0
	Sylva	0.89	0.30	0.32	0.33	0.32	0.82	0.8	0.6	1.2	0.9	0.9
	FAT	4.86	0.40	0.47	0.49	0.53	1.13	15.0	13.5	13.8	14.1	13.8
ViT-B	Per-LoRA	3.14	0.34	0.39	0.42	0.45	0.92	1.3	1.4	1.4	1.2	1.5
	Sylva	3.14	0.33	0.37	0.41	0.45	0.91	0.8	0.9	0.8	0.7	0.8
	FAT	11.43	0.75	0.93	1.78	1.87	2.41	49.9	47.6	49.1	48.7	48.2
ViT-L	Per-LoRA	6.63	0.57	0.88	1.29	1.39	1.71	3.1	2.9	3.2	3.4	3.0
	Sylva	6.63	0.55	0.87	1.28	1.39	1.70	1.1	1.0	1.2	1.2	1.1

Ablation Experiments:

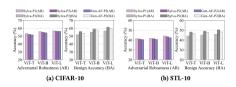
• Impact of loss function modules.



Impact of the ball tree aggregation.



Impact of different phases.



• Impact of different hyperparameters.

Table 5: The Impact of Hyperparameters in CIFAR-10

Para	Value	AR	BA	Para	Value	AR	BA
r	0.9	55.03	59.03		20	56.87	57.27
	0.7	54.65	58.35	β	10	56.22	58.34
	0.5	54.70	57.25		5	55.03	59.03
	0.3	52.97	56.24		1	51.29	61.2
e	0.9	55.03	59.03	В	50	49.24	53.98
	0.7	55.01	58.93		100	53.04	56.37
	0.5	54.31	58.35		300	55.03	59.03
	0.3	55.25	58.22		500	55.39	60.77
,	8	54.86	58.63	PGD	3	48.04	61.20
	4	55.03	59.03		5	52.16	60.6
	2	55.42	58.36	Strength	10	55.03	59.03
	1	53.26	57.28		15	56.96	56.89

Outline

- 1. Introduction
- 2. Preliminaries
- 3. Methodology
- 4. Experiments
- 5. Discussion and Conclusion

Discussion and Conclusion

Discussion

- Adding heterogeneous model support for device adaptation: Different model size.
- Expanding experiments with larger-scale models: LLaVA or Qwen-VL.
- Strengthening the threat model: Threat during training.
- Adapting to multi-modal training and attacks: Different downstream tasks.

Conclusion

- Novel contribution: First adversarial defense for pre-trained models in distributed settings.
- Two-Phase Framework: Robustness via adversaria fine-tuning; Balance via game-based layer freezing.
- Lightweight: Outperforms SOTA with minimal overhead.

Thank you for your attention! Questions?