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1 Introduction

Research Background: 

• Many things in the real world can be simplified as a complex system composed of nodes and the relationships 

between nodes like a graph.

Challenge: 
Fig 1: Application of common graph topologies

• The real graph topology we can get is limited.


• Real networks in different domains have statistical properties.
Fig 2: Random Graph Model
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1 Introduction

Research Status: 

 Random Graph 
 Model

 Erd''os-R'enyi Model

 Watts-Strogaz Model

 Barabasi-Albert Model

 Kronecker Model

 Stochastic Block Model

 DCSBM

 MMSBM

 GSBM

 ...

 ...

 Node Classification 
 Algorithm

 Graph Neural Network

 Graph Embedding

 Belief Propagation

 ...

• Infer the phase transition of DCSBM using a physics method called Belief Propagation (BP) algorithm.


• Test how similar the DCSBM is to the real graphs in the distribution level.


• Explore the effect of different community structure parameters on the phase transition.

Fig 3: Research Status

Train

Our Contributions: 
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2 The Stochastic Block Model

How to construct SBM: 

• Suppose a graph has  nodes and the adjacency matrix  is 

represented as an edge between node  and node .


• Suppose there are a group of SBM, and there is a  matrix 

 that represents the probability of edge between group  and , 

where the matrix element is  when , and the matrix element 

is  when .

N Aij

i j

q × q

Pab a b

pin a = b

pout a ≠ b Fig 4: Stochastic Block Model

pin =
cin

N
pout =

cout

N

• The group of node  is , then the probability of edge between  and  is , and the probability of non-edge is 

.


• Since  exists in the sparse graph generation, an matrix  is defined, which can be 

expressed as:

i ti i j ptitj

1 − ptitj

Pab = O(1/N) Cab = NPab
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2 The Stochastic Block Model

SBM degree distribution: 

Fig 5: Traditional SBM degree distribution image

• In the random graph, the distribution is:
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2 Datasets in Real Networks

Datasets: 

Tab 1: Dataset Properties

Datasets Nodes Edges Features Labels

Cora 2,708 5,278 1,433 7

Citeseer 3,327 4,552 3,703 6

Pubmed 19,717 44,324 500 3

OGB-arxiv 169,343 1,166,234 128 40
Fig 6: Cora dataset

• Cora: A subset of the scientific and technical literature 

citation network.


• Citeseer: A part of papers from Digital Paper Library.


• Pubmed: The publications from the Pubmed database.


• OGB-arxiv: A data set for machine learning on graphs.

• Common real benchmark data sets are converted 

into data information for storage by PyG.


• Using networkx to construct graph network of 

data and calculate its degree distribution.
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2 Datasets in Real Networks

Degree Distribution: 

Fig 7: Real graph network degree distribution

• Scale-free network: Most nodes in the network 

are connected to few nodes, and very few nodes are 

connected to very many nodes.


• The real network joins new nodes over time, 

and the earlier the nodes appear, the easier it is to 

connect with other nodes. (The rich get richer)


• Power law distribution:

P(k) ∼ k−γ

lg P(k) ∼ − γ lg k
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3 Weight Optimization Based on Random Sequence

Construction of DCSBM: 

Fig 8: DCSBM based on random power-law sequences

• Intra-class and inter-class connection probability 

 and node power-law weights .Pab θ

P(Aij = 1) = Pab =
Cab

N
=

cin

N
(ti = tj)

cout

N
(ti ≠ tj)

P(Aij = 1) =
θiθjCab

N
=

θiθjcin

N
(ti = tj)

θiθjcout

N
(ti ≠ tj)

SBM: 

DCSBM: 

Node weight

Double Constraint: • A random set of power-law sequences as weights .


• Disadvantage: The larger the degree value, the smaller 

the weight.

θ
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3 Weight Optimization Based on Genetic Algorithm

Construction of DCSBM by GA: 

Fig 9: DCSBM based on Genetic Algorithm

• Extract degree values in real network nodes, randomly shuffle 

and constrain as .{θu/x}N
u=1

• Treat the constraint parameter  as the 

population, the graph  constructed by 

extract  from one individual dataset.


• The fitness function is:

x

G(x)

θ

f(x) =
1
N

N

∑
i=1

deg(i) − c′￼ , i ∈ G(x)

• For the convenience of calculation, the 

final constraints are:

1
N

N

∑
i=1

θi = 1

1
N

N

∑
i=1

θ2
i = ϕ = O(1)
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4 Belief Propagation

Node Classification Algorithm: Tab 2: Belief propagation algorithm formulas

• Bayesian algorithm applied to graphs： SBM DCSBM

Auxiliary 
External Field

Belief 
Propagation

Marginal 
Probability

P ({ti} ∣ G, θ) =
P (G ∣ {ti}, θ) P0 ({ti})

∑ti
P (G ∣ {ti}, θ) P0 ({ti})
NP hard problem

• The summation term in the denominator 

needs to be solved by Boltzmann distribution.

• The KL divergence of Belief Propagation 

is similar to Bayesian algorithm.

How to solve?

• The BP algorithm was developed to deal with the spin glass phase, that 

is, to define the edge probability from the point of physics.

hti =
1
N ∑

k
∑

tk

ptktiψ
k
tk

ψ i→j
ti

=
1

Zi→j
ntie

−hti ∏
k∈∂i\j

∑
tk

ptitkψ
k→i
tk

ψ i
ti =

1
Zi

ntie
−hti∏

j∈∂i
∑

tj

ptjtiψ
j→i
tj

hti =
1
N ∑

k
∑

tk

θkθiptktiψ
k
tk

ψ i→j
ti

=
1

Zi→j
ntie

−hti ∏
k∈∂i\j

∑
tk

ptitkθkθiψ k→i
tk

ψ i
ti =

1
Zi

ntie
−hti∏

j∈∂i
∑

tj

ptjtiθkθiψ
j→i
tj
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4 Phase Transition

Derivation of Phase Transitions: 

• The BP transfer process will eventually converge to a fixed point 

.


• Impose a disturbance  on the leaf node. The influence  of the 

disturbance message passing and the disturbance on the whole graph are:

ψ i→j
ti

= ψ i
ti = αti

ηk
t T Fig 10: BP algorithm process

Ti→j
titj

=
∂ψ j→x

ti

∂ψ i→j
ti αti

= αti (
nptitj

c
− 1)

Fig 11: The tree structure of SBM or DCSBM

The number of leaf nodes:


• SBM: 

• DCSBM: 

c

cϕ

ηk0
t0

= ∑
{ti}i=1,…,d

[
d−1

∏
i=0

Ti→j
titj ] ηkd

td
= Tdηkd ≈ λdηkd

⟨(ηk0
t0 )

2⟩ ≈ ⟨(
cd

∑
k=1

λdηk
t )

2

⟩ ≈ cdλ2d ⟨(ηk
t )2⟩

• The variance of the disturbance:

⟨(ηk0
t0 )

2⟩ ≈ ⟨
cϕd

∑
k=1

λdηk
t

2

⟩ ≈ (cϕ)dλ2d ⟨(ηk
t )2⟩

SBM:


DCSBM:
SBM:         DCSBM: cλ2 = 1 cϕλ2 = 1

The Phase Transition
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5 Evaluation

• Cora, Citeseer and Pubmed.
Datasets: 

Method: 

• NetMF and ProNE.

Idea: 
• The results will be approximate when we use the same algorithm 

testing on models and datasets if they are similar enough.

Result: 
• The node classification accuracy of the real dataset is basically the 

same as that of DCSBM.


• Real datasets are more complex than DCSBM.

Fig 12: Graph embedding algorithm test

Q1: How to detect DCSBM approximation?
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5 Evaluation

• The solid line is the theoretical value obtained in the BP 

algorithm. The green dot is the test result of the actual model.


• The position corresponding to the black dotted line is the 

phase transition critical.

Fig 13: Graph embedding algorithm test

Q2: How to prove the phase transition? Q3: How to test the effect of parameters on the model?

Fig 14: Graph embedding algorithm test

• When the weight  is fixed and the average degree value 

 increases, the node classification accuracy improves.


• When the second moment  increases, the probability 

ratio  of the phase transition point increases.

θ

c

ϕ

ε
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6 Conclusion

• The differences and approachable directions of traditional SBM and real datasets are analyzed and compared.

• SBM: Poisson distribution.


• Real graphs: Power law distribution


• We build DCSBM in two ways, and the comparison test is done with the real datasets.

• Random sequence: Need to be constrained by phase transition.


• Genetic Algorithm: More accurate but more complex.


• The phase transition of DCSBM is derived by using BP algorithm and stochastic process

Conclusion: 



Thanks
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