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Introduction

Research Background:

e Many things in the real world can be simplified as a complex system composed of nodes and the relationships

between nodes like a graph.
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Fig 1: Application of common graph topologies
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Challenge:

e The real graph topology we can get 1s limited.
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Fig 2: Random Graph Model

e Real networks in different domains have statistical properties.
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Introduction

Research Status:
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Fig 3: Research Status
Our Contributions:
e Infer the phase transition of DCSBM using a physics method called Belief Propagation (BP) algorithm.

e Test how similar the DCSBM is to the real graphs in the distribution level.

e Explore the effect of different community structure parameters on the phase transition.
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2 The Stochastic Block Model

How to construct SBM:

e Suppose a graph has N nodes and the adjacency matrix A;; 1s
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represented as an edge between node 1 and node j.

e Suppose there are a group of SBM, and there 1s a g X g matrix

P_, that represents the probability of edge between group a and b,

a

where the matrix element is p,, when a = b, and the matrix element

iS Doy When a # b. Fig 4: Stochastic Block Model

e The group of node 1 1s ¢, then the probability of edge between 1 and j 1s P11 and the probability of non-edge 1s

1 — Py
e Since P, = O(1/N) exists in the sparse graph generation, an matrix C_, = NP _, is defined, which can be

expressed as:

Cin Cout

Pin =W Pour = N
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2 The Stochastic Block Model

SBM degree distribution:
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Fig 5: Traditional SBM degree distribution image

¢ In the random graph, the distribution is:

_ k N-1-k Npk _N c* e
P(deg(v) =k) = . p (1-p) N - o : P(k) - TR p=Fe
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2 Datasets in Real Networks

Datasets: \

Tab 1: Dataset Properties

Cora 2,708 5,278 1,433 I
Citeseer 3,327 4,552 3,703 6
Pubmed 19,717 44,324 500 3
OGB-arxiv 169,343 1,166,234 128 40
Fig 6: Cora dataset
o (ora: A subset of the scientific and technical literature e Common real benchmark data sets are converted
citation network. into data information for storage by PyG.
o (iteseer: A part of papers from Digital Paper Library. e Using networkx to construct graph network of
¢ Pubmed.: The publications from the Pubmed database. data and calculate its degree distribution.

e (OGB-arxiv: A data set for machine learning on graphs.
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2 Datasets in Real Networks

Degree distribution fitting of Cora Degree distribution fitting of Citeseer
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Fig 7: Real graph network degree distribution
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3 Weight Optimization Based on Random Sequence

Construction of DCSBM::

Cab W i = tJ)
SBM: - PA;=1)=P,=—"=1
N UL (1. % 1)
N
¢ Node weight
Hiejcz’n
CS A 1 eiejcab N (1 = tj)
DCSBM:  P(A.. = = —
( / ) N Hiejcout
N (4 7 1)

Double Constraint:

e [ntra-class and inter-class connection probability

P_, and node power-law weights 6.
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Degree distribution fitting of DCSBM

Degree distribution fitting of DCSBM
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Fig 8: DCSBM based on random power-law sequences

e A random set of power-law sequences as weights 6.

e Disadvantage: The larger the degree value, the smaller
the weight.
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3 Weight Optimization Based on Genetic Algorithm

Construction of DCSBM by GA:

e [Extract degree values in real network nodes, randomly shuffle

. N
and constrain as {Qu/x} R
U=

Iterative process of genetic algorithm
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Fig 9: DCSBM based on Genetic Algorithm

e TTreat the constraint parameter x as the
population, the graph G(x) constructed by
extract @ from one individual dataset.

e The fitness function 1s:

N
fx) = %lzzl deg(i) — c'|,1 € G(x)

e For the convenience of calculation, the

final constraints are:

I <
N§9i=¢=0<1>
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4 Belief Propagation

Node Classification Algorithm: Tab 2: Belief propagation algorithm formulas

e Bayesian algorithm applied to graphs:

P(G{1}.0)Py({1}) Auxiliary = 2 Y Pt =2 00,

P ({1} 1G,0) = External Field P r
%, P (G {1).0) Po({1})

Belief TN —h, k—>i i—j 1 —h k—i

Propagation v, = ﬁnﬁ H Zp 1 = I1 Zpttkgkgwlk
. . . keoi\j 5 keai\j |

¢ The summation term in the denominator ) )
. . : Marginal i —h, =i i 1 —h =
needs to be solved by Boltzmann distribution. NS, wi = —nt, T01 P! vy =—ome ™ Y Pubib!
robabliity jeai | 1 jeai | 1

* How to solve?

e The KL divergence of Belief Propagation

e The BP algorithm was developed to deal with the spin glass phase, that

1s, to define the edge probability from the point of physics.
1s similar to Bayesian algorithm.
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4 Phase Transition

Derivation of Phase Transitions:

o®

e The BP transfer process will eventually converge to a fixed point NG)\j
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e Impose a disturbance ’Y;k on the leaf node. The influence 7 of the

disturbance message passing and the disturbance on the whole graph are:
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The number of leaf nodes:

" e SBM: ¢

. : e DCSBM: c¢
e The variance of the disturbance:
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5 Evaluation

The training result of NetMF

Q1: How to detect DCSBM approximation?

Datasets:
S s | :
e e e (ora, Citeseer and Pubmed.
g oo —— Pubmed
Method:

e NetMF and ProNE.

20% 30% 40% 50% 60% 70% 80%

Training nodes ratio Idea:

The training result of ProNE e The results will be approximate when we use the same algorithm

testing on models and datasets 1f they are similar enough.

Result:
—— Citetseer

s w = Pubimed e The node classification accuracy of the real dataset is basically the

70% ——~Cora

Accuracy

same as that of DCSBM.

0n ow _aw  sn 0% 10w eow e Real datasets are more complex than DCSBM.

Training nodes ratio

Fig 12: Graph embedding algorithm test

Tianyu Qi Beijing Institute of Technology



5 Evaluation

Q2: How to prove the phase transition?
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Fig 13: Graph embedding algorithm test
¢ The solid line 1s the theoretical value obtained 1n the BP
algorithm. The green dot 1s the test result of the actual model.

e The position corresponding to the black dotted line 1s the

phase transition critical.

Q3: How to test the effect of parameters on the model?

Change curve of phase transition point
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Fig 14: Graph embedding algorithm test

e When the weight ¢ is fixed and the average degree value
c increases, the node classification accuracy improves.
e When the second moment ¢ increases, the probability

ratio € of the phase transition point increases.
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6 Conclusion

Conclusion:

e The differences and approachable directions of traditional SBM and real datasets are analyzed and compared.

e SBM: Poisson distribution.

e Real graphs: Power law distribution

e We build DCSBM 1n two ways, and the comparison test 1s done with the real datasets.

e Random sequence: Need to be constrained by phase transition.

e Genetic Algorithm: More accurate but more complex.

e The phase transition of DCSBM is derived by using BP algorithm and stochastic process
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